

HIGH EFFICIENCY CARBON DIOXIDE COMPRESSOR AND SYSTEM

Shanghai, 04.2021

Wang Yi

TABLE OF CONTENTS

- // Motivation and environment
- // BITZER's strategy and ready
- // A new generation of energy efficient CO2 compressors
- // Compressors in carbon dioxide booster systems
- // Study conclusions

MOTIVATION

// General targets

- Increase of energy efficiency
- Minimize carbon emission
- Cutback the use of HFC's

In an ideal situation, highest annual energy efficiencies are achieved with a natural refrigerant in a simple and cost effective way!

INTERNATIONAL ENVIRONMENT

TIME LINE 1: OZONE DEPLETION ODP

INTERNATIONAL ENVIRONMENT

TIME LINE 2: GLOBAL WARMING GWP

INTERNATIONAL ENVIRONMENT

EU F-GAS REGULATION 517/2014

// HFC use bans in RAC sectors from 2015 on (selection)

– 2015	domestic R + F
0000	O(() D () ()

2020 Stationary Refrigeration GWP > 2500
 Commercial R + F GWP > 2500
 Movable AC GWP > 150

• Exception for Refr. <-50 °C

2022 Commercial R + F GWP > 150

Multipack commercial ... GWP > 150

Cascade primary system GWP > 1500

2025 Split AC GWP > 750

ECONOMIC AND POLITICAL ENVIRONMENT IN CHINA

// 1989	Environmental Protection Law P.R.C
	Energy Conservation Law P.R.C
// 1991	Agreement in Montreal Protocol
// 2000	Air Pollution Prevention and Control Law
// 2009	CO2 Emission/GDP in 2020 40%~45%↓ (compared with 2005)
// 2014	National plan for tackling climate change (2014-2020 years)
// 2016	Amendmend to Montreal Protocol
	(HFC use 85%↓ in 2020-22 by 2045)
// 2019	Kigali Amendment
	(HFC 80%↓ by 2045, <0.5degree increase by end of 21century)

CHALLENGES IN REFRIGERATION

STRESS FIELD OF NEW DEVELOPMENTS

Increasing demand for R&AC in societies and industry

Impact of R&AC to global warming

BITZER: low complexity, with higher efficiency at low cost

Regulations on use of HFC's, e.g. F-Gas-Regulation

Systems: Rising relevance of efficiency at low costs

TABLE OF CONTENTS

- // Motivation and environment
- // BITZER's strategy and ready
- // A new generation of energy efficient CO2 compressors
- // Compressors in carbon dioxide booster systems
- // Study conclusions

PRODUCT STRATEGY

Three Main Product Development Tracks

Low GWP/ Natural Refrigerants

Efficiency Increase in Full- and Part-Load

Intelligent Products & User-Friendliness

BITZER READY FOR NATURAL REFRIGERANTS

BITZER product with nature refrigerants

CO2 Reciprocating Compressor

Pressor

2016

Link Bucher (left) presents a mood of a reclaracating compressor and a cutificate to Aid Suits.

Singelessy.

1998

1st subcritical CO₂ compressor

 CO₂ Seminar in Schaufler Academy

2003

• 1st transcritical CO₂ compressor

2018

•10,0000th CO₂ Compressor produced in SKZ

Bitzer marks 100,000th CO2 compressor

Bizer

BITZER READY FOR NATURAL REFRIGERANTS

BITZER: > 100,000 sold CO₂ compressors, mainly in commercial refrigeration!

Bizer

BITZER READY FOR BETTER EFFICIENCY-CONSISTENTLY&PERMANENTLY

Improving performance of system:

Expander compressor unit with heat exchanger to "sub cool" the main CO2 stream

- Efficiency increase (SEPR* +13 %)
- Capacity increase (Qo** +20 %)

- * Strassbourg climate
- ** 32°C ambient temperature

BITZER READY FOR INTELLIGENT PRODUCT AND BETTER FRIENDLINESS

// Better products & better Service

Bitzer Software

- BEST

- IQ Module

INTELLIGENT PRODUCT AND FRIENDLINESS

BITZER READY FOR INTELLIGENT PRODUCT AND BETTER FRIENDLINESS

Broad service fortfolio

// Our worldwide service network Green Point ensures that our customers find the service they need wherever they are:

- Compressor repairs and overhauls by compressor specialists
- Technical training and expertise
- Detailed documentation of our products

BITZER READY FOR INTELLIGENT PRODUCT AND BETTER FRIENDLINESS

TABLE OF CONTENTS

- // Motivation and environment
- // BITZER's strategy and ready
- // A new generation of energy efficient CO2 compressors
- // Compressors in carbon dioxide booster systems
- // Study conclusions

THE NEXT GENERATION OF ENERGY EFFICIENT COMPRESSORS

Highest ecoefficiency Optimized efficiency for full and part load

Lowest CO₂ footprint, simple, smart, cost-effective

CRII for CO₂: World novelty, step less, easy, flexible

New oil return management

LSPM motor: Efficiency & robustness

IQ module: Operating of integrated functions

THE INTEGRAL APPROACH

ENERGY EFFICIENT

Higher COP

- // Increased efficiency is based on
 - Higher motor efficiency (LSPM)
 - Higher mass flow rates due to synchronous speed
 - Higher mass flow rates due to higher suction gas density

Focus on annual energy efficiency is most important

- // Benefit dependent on
 - Motor size and torque requirement
 - System configuration (number and size of comp., VSD, etc.)
 - Climate and load profile of the supermarket

LSPM

- // Line Start Permanent Magnet
- // Stator generates rotating field
- // Start: Squirrel cage generates magnetic field (asynchronous start)
- // Operation: Magnetic field in rotor is generated by permanent magnet
- // No current dependent losses in squirrel cage due to heating effect caused by induced current = higher efficiency
- // Synchronous speed, not dependent on torque requirement
- // Higher breaking torque, theoretically acts like a generator at coast down
- // Combines efficiency and robustness, flexible operation on mains and VSD

SEPR – EN13215: 4DTC-25K (ASM) VS. 4DTEU-25LK (LSPM)

PARALLEL COMPOUND: ROI CALCULATION MUST BE BASED ON ANNUAL OPERATING HOURS

TABLE OF CONTENTS

- // Motivation and environment
- // BITZER's strategy and ready
- // A new generation of energy efficient CO2 compressors
- // Compressors in carbon dioxide booster systems
- // Study conclusions

APPLICATION INTRODUCTION OF CO2 COMPRESSORS

- // The first prototype compressors for sub-critical CO2 applications were supplied to research institutions like the DTI in Denmark in the years 1995 to 1998.
- // In the year 2000, the first commercial HFC/CO₂ cascade system was installed in Bettembourg in Luxembourg by Linde.
- // The propane/CO2 cascade system was installed McDonald in Vejle , Denmark , it was designed and engineered by DTI in 2002.
- // In the year 2004, Linde commissioned the first all CO2 system for trans-critical application in Wettingen, Switzerland.
- // The 4th generation of CO2 compressors made by BITZER in the year 2010.
- // Has sold more than 100.000 CO2 compressors by the end of February 2018.

The 4th generation of CO2 compressor of the ECOLINE+ series

CHALLENGES WITH CO2 AS REFRIGERANT

Influences on the reliability of a CO₂ compressor

THE SOLUTION — BITZER CO2 COMPRESSOR

Specially treated piston surfaces, low average piston velocities, low pressure reduction per piston ring

ILLUSTRATION OF AN APPLICABLE SAFETY CHAIN

- // 3 4: C1 70 Hz, C2 on, C3
 off changing to C1 25 Hz,
 C2 on, C3 on
- // 5: All in under full load summer conditions
- // 6: Minimum load conditions winter time "closed": C1 operating with low but not minimum frequency.

Relative Capacity of the FGB System @ Nominal and Minimum Load Conditions

SIMPLIFIED MODEL OF A LOAD PROFILE IN COMMERCIAL REFRIGERATION IN A WARM CLIMATE

Ambient temp. DB	Bin hours	ΔT g.c./cond.		Bin hours OPEN	Load MT OPEN	Load LT OPEN	Bin hours CLOSED	Load MT CLOSED	Load LT CLOSED
[°C]	[h]	[K]	[°C]	[h]	[%]	[%]	[h]	[%]	[%]
-5,0	0,12	Ģ	9,0	0,0	65,0	68,0	0,1	30,0	50,0
-2,5	3,13	2	9,0	0,7	65,0	68,0	2,4	30,0	50,0
0,0	27,84	- 2	9,0	7,3	65,0	68,0	20,5	30,0	50,0
2,5	79,95	8,0	10,5	23,1	65,0	68,0	56,9	30,0	50,0
5,0	318,82	8,0	13,0	95,4	65,0	68,0	223,4	30,0	50,0
7,5	510,94	8,0	15,5	174,5	65,0	68,0	336,4	30,0	50,0
10,0	957,29	8,0	18,0	374,6	65,0	68,0	582,7	30,0	50,0
12,5	916,86	8,0	20,5	403,1	66,8	69,1	513,7	30,0	50,0
15,0	1164,71	8,0	23,0	602,6	72,1	74,9	562,1	32,1	52,9
17,5	796,06	8,0	25,5	412,6	77,5	80,6	383,5	37,5	60,0
20,0	885,92	8,0	28,0	401,2	82,9	86,3	484,7	42,9	67,1
22,5	764,55	6,0	28,5	331,7	88,2	92,0	432,9	48,2	74,3
25,0	964,27	4,0	29,0	457.9	93.6	97.7	506,4	53,6	81,4
27,5	592,23	3,0	30,5	390,5	98,9	100,0	201,8	58,9	88,6
30,0	483,58	2,0	32,0	418,5	100,0	100,0	65,0	60,0	90,0
32,5	202,53	2,0	34,5	195,4	100,0	100,0	7,1	60,0	90,0
35,0	78,91	2,0	37,0	78,0	100,0	100,0	1,0	60,0	90,0
37,5	10,00	2,0	39,5	9,9	100,0	100,0	0,1	60,0	90,0
40,0	2,24	2,0	42,0	2,2	100,0	100,0	0,0	60,0	90,0
42,5	0,04	2,0	44,5	0,0	100,0	100,0	0,0	60,0	90,0

SIMPLIFIED ILLUSTRATION OF AN APPLICATION LIMIT OF A COMPRESSOR FOR TRANS-CRITICAL APPLICATIONS

LUBRICANTS

Lubricant type	Viscosity range [cSt]	Gas solubility	Tribology characteristics	Miscibility +550°C
Polyol Ester (POE)	32220 dependent on	High	O (+ ①)	Yes
Polyalpha Olefin (PAO)	lubricant, compressor	Medium	+	No
Poly Alkylene Glycol (PAG)	type and application	Low	++	Partly

① With special anti wear additives

- POE + Good overall properties ⇒ optimal for branched systems (oil return)
 - High gas solubility ⇒ strong demands on compressor design technique
- PAO + Low vapour pressure, high viscosity index ⇒ favourable with screws
 - No miscibility ⇒ requires high efficiency oil separators
- PAG + Good lubrication properties & thermal stability, no reaction with water (t < 160 °C)
 - Miscibility, lower dielectric strength, conductivity in presence of e. g. Na+, K+

OIL MANAGEMENT

The recommended system for an active oil management: Low pressure oil reservoir

Stronger degassing effects: High pressure oil reservoir

VIBRATIONS

Data Input Refrigerant							
Refrigerant	R744						
HP = Discharge Pressure	90 ba	ar					
DGT = Discharge gas temperature	120 °C)					
a = Sonic speed	283,53 m	/s					
Nominal Compressor rpm @ 50 Hz	1450 m						
Data Input Compressor	17-3-18-50						
Operating frquency of the compressor	25	35	45	50	55	60	70 Hz
Compressor rpm, nominal	725	1015	1305	1450	1595	1740	2030 1/min
Rotational frequency of the shaft	12	17	22	24	27	29	34 1/s
Number of cylinders / working strokes per revelution	4						

Results

results								
Fundamental frequency of the excitation	fg=n/60*N	48	68	87	97	106	116	135 Hz
	li = Critical p	ipe length	li	= a/2*i*f i	= Harmoni	c number o	f oscillation	characteristic
Critical pipe length 1st order	1	2,93	2,10	1,63	1,47	1,33	1,22	1,05 m
Excitation Frequency 1st order		48,3	67,7	87,0	96,7	106,3	116,0	135,3 Hz
Range of critical pipe length 1st order	10% -10%	3,23 2,64	2,30 1,89	1,79 1,47	1,61 1,32	1,47 1,20	1,34 1,10	1,15 m 0,94 m
Critical pipe length 2nd order	2	1,47	1,05	0,81	0,73	0,67	0,61	0,52 m
Excitation Frequency 2nd order		96,7	135,3	174,0	193,3	212,7	232,0	270,7 Hz
Range of critical pipe length	10%	1,61	1,15	0,90	0,81	0,73	0,67	0,58 m
2nd order	-10%	1,32	0,94	0,73	0,66	0,60	0,55	0,47 m
Critical pipe length 3rd order	3	0,98	€ 30	0,54	0,49	0,44	0,41	0,35 m
Excitation Frequency 3rd order		145,0	203,0	261,0	290,0	319,0	348,0	406,0 Hz
Range of critical pipe length	10%	1,08	0,77	0,60	0,54	0,49	0,45	0,38 m
3rd order	-10%	0,88	0,63	0,49	0,44	0,40	0,37	0,31 m
Critical pipe length 4th order	4	0,73	0,52	0,41	0,37	0,33	0,31	0,26 m
Excitation Frequency 4th order		193,3	270,7	348,0	386,7	425,3	464,0	541,3 Hz
Range of critical pipe length	10%	0,81	0,58	0,45	0,40	0,37	0,34	0,29 m
4th order	-10%	0.66	0.47	0.37	0.33	0.30	0.27	0,24 m

Excitation frequencies and critical pipe length of a four cylinder compressor at specific conditions

VIBRATIONS

Excitation frequencies for compressors with two, four and six cylinders from the first to the second harmonic

TABLE OF CONTENTS

- // Motivation and environment
- // BITZER's strategy and ready
- // A new generation of energy efficient CO2 compressors
- // Compressors in carbon dioxide booster systems
- / Study conclusions

STUDY CONCLUSIONS

- // Provide the schematic illustration of an applicable safety chain;
- // Provide the so-called VARISTEP solution, and it can be easily combined with the efficient and well-proven concepts of rack controllers;
- // Provide the simplified model of a load profile in commercial refrigeration in a warm climate;
- // Analyse the factors influencing application limits;
- // Polyol ester (POE) oils typically apply anti-wear additives to ensure good tribology characteristics, the design of BITZER CO2 compressors is tailored for POE oils;
- // Provide the effective measure about oil management for MT and LT booster systems;
- // Provide the ways about reducing vibrations of CO2 systems.
- // CO2 applications require efficient compressors at full load and part load conditions together with a smart controls, system and heat exchanger design to reduce the carbon footprint of the installations.

DAS HERZ DER FRISCHE